翻訳と辞書
Words near each other
・ Solenodonsaurus
・ Solenofilomorphidae
・ Solenogastres
・ Solenogenys
・ Solenogyne
・ Solenoid
・ Solenoid (disambiguation)
・ Solenoid (DNA)
・ Solenoid (mathematics)
・ Solenoid (meteorology)
・ Solenoid bolt
・ Solenoid brake
・ Solenoid protein domain
・ Solenoid valve
・ Solenoid voltmeter
Solenoidal vector field
・ Solenomelus
・ Solenomelus pedunculatus
・ Solenomorpha
・ Solenoparia
・ Solenopezia
・ Solenopleuridae
・ Solenopora
・ Solenopotes capillatus
・ Solenopsidini
・ Solenopsin
・ Solenopsis
・ Solenopsis (plant)
・ Solenopsis daguerrei
・ Solenopsis fugax


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Solenoidal vector field : ウィキペディア英語版
Solenoidal vector field
In vector calculus a solenoidal vector field (also known as an incompressible vector field or a divergence free vector field ) is a vector field v with divergence zero at all points in the field:
: \nabla \cdot \mathbf = 0.\,
==Properties==
The fundamental theorem of vector calculus states that any vector field can be expressed as the sum of an irrotational and a solenoidal field. The condition of zero divergence is satisfied whenever a vector field v has only a vector potential component, because the definition of the vector potential A as:
:\mathbf = \nabla \times \mathbf
automatically results in the identity (as can be shown, for example, using Cartesian coordinates):
:\nabla \cdot \mathbf = \nabla \cdot (\nabla \times \mathbf) = 0.
The converse also holds: for any solenoidal v there exists a vector potential A such that \mathbf = \nabla \times \mathbf. (Strictly speaking, this holds only subject to certain technical conditions on v, see Helmholtz decomposition.)
The divergence theorem gives the equivalent integral definition of a solenoidal field; namely that for any closed surface, the net total flux through the surface must be zero:
:
where d\mathbf is the outward normal to each surface element.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Solenoidal vector field」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.